Sixth Grade Curriculum

Theme: Advanced Technology, Environmental Engineering, and Mathematical Concepts **Duration**: 3 Months (Approximately 12 weeks)

Curriculum Overview

- Unit 1: Advanced Scratch Programming (Weeks 1–4)
- Unit 2: Environmental Engineering Projects (Weeks 5–8)
- Unit 3: Introductory Algebra and Geometry (Weeks 9–12)

Unit 1: Advanced Scratch Programming

Duration: 4 Weeks

Unit Objectives

- Utilize advanced programming concepts such as variables, loops, conditional statements, and lists.
- Develop complex projects in **Scratch**, including interactive games and simulations.
- Understand debugging and troubleshooting techniques.
- Enhance problem-solving and logical thinking skills.
- Encourage creativity and self-expression through coding.

Week 1: Review and Introduction to Advanced Concepts

Lesson 1: Scratch Refresher and Review

- **Duration**: 60 minutes
- Activities:
 - Review Session:
 - Revisit basic **Scratch** interface elements and simple coding blocks.
 - Mini Project:
 - Create a simple animation or story to refresh skills.
 - Discussion:
 - Share experiences and previous projects.
- Assessment:
 - Completion of the mini project.

• Demonstrated understanding of basic concepts.

Lesson 2: Introducing Variables and Data Types

- **Duration**: 60 minutes
- Activities:
 - Explanation:
 - Define variables and their importance in programming.
 - Discuss data types (numbers, strings).
 - Practice:
 - Create a program that uses variables to track scores or points.
 - Hands-On Activity:
 - Experiment with changing variable values and observing outcomes.
- Assessment:
 - Correct implementation of variables.
 - Ability to explain how variables function within a program.

Lesson 3: Utilizing Operators

- **Duration**: 60 minutes
- Activities:
 - Introduction:
 - Explore arithmetic and logical operators.
 - Coding Exercise:
 - Program calculations using operators (e.g., calculators, counters).
 - **Problem-Solving**:
 - Use operators to solve mathematical challenges within Scratch.
- Assessment:
 - Proper use of operators in code.
 - Accuracy in mathematical computations.

Lesson 4: Working with Lists (Arrays)

- **Duration**: 60 minutes
- Activities:
 - Concept Explanation:
 - Introduce lists as a way to store multiple items.
 - **Application**:
 - Create a program that manages a list (e.g., shopping list, high scores).
 - Interactive Activity:
 - Manipulate list items (add, delete, search).
- Assessment:
 - Successful creation and management of lists.
 - Understanding of list operations.

Week 2: Advanced Control Structures and Custom Blocks

Lesson 5: Deep Dive into Loops and Conditionals

- **Duration**: 60 minutes
- Activities:
 - In-Depth Exploration:
 - Discuss "repeat until," "forever," "if-else," and nested loops.
 - Coding Activity:
 - Program a sprite to perform complex tasks using loops and conditionals.
 - Challenge:
 - Create patterns or sequences that require nested loops.
- Assessment:

0

- Effective use of advanced loops and conditionals.
- Problem-solving demonstrated in coding challenges.

Lesson 6: Creating Custom Blocks (Functions)

- **Duration**: 60 minutes
- Activities:
 - **Explanation**:
 - Define custom blocks and their benefits (code reuse, simplification).
 - Practice:
 - Develop custom blocks for repetitive tasks in a program.
 - **Application**:
 - Use custom blocks in a project to enhance functionality.
- Assessment:
 - Creation of effective custom blocks.
 - Understanding of parameters and inputs.

Lesson 7: Introduction to Event Handling

- **Duration**: 60 minutes
- Activities:
 - Concept Introduction:
 - Discuss how events can trigger code (keyboard, mouse clicks).
 - Interactive Coding:
 - Create interactive programs that respond to user inputs.
 - Game Development:
 - Begin designing an interactive game that uses multiple event handlers.
- Assessment:
 - Implementation of event-driven programming.
 - Responsiveness of programs to user actions.

Lesson 8: Debugging Strategies

- **Duration**: 60 minutes
- Activities:
 - **Discussion**:
 - Common programming errors and how to identify them.
 - Debugging Practice:
 - Provide students with buggy code to fix.
 - Collaboration:
 - Pair programming to troubleshoot issues.
- Assessment:
 - Ability to identify and correct errors.
 - Demonstrated patience and logical reasoning.

Week 3: Project Development

Lesson 9: Planning the Capstone Project

- **Duration**: 60 minutes
- Activities:
 - **Project Introduction**:
 - Outline the requirements for a complex Scratch project (game, simulation).
 - Brainstorming Session:
 - Generate ideas individually or in pairs.
 - Storyboarding:
 - Create a detailed plan, including objectives, features, and user interactions.
- Assessment:
 - Completeness and feasibility of the project plan.
 - Creativity and originality in ideas.

Lesson 10: Starting the Capstone Project

- **Duration**: 60 minutes
- Activities:
 - Implementation:
 - Begin coding according to the storyboard.
 - Milestone Setting:
 - Establish short-term goals for project completion.
 - Instructor Support:
 - Provide guidance and troubleshoot initial issues.
- Assessment:
 - Progress towards milestones.
 - Effective time management.

Lesson 11: Incorporating Advanced Features

• **Duration**: 60 minutes

- Activities:
 - Feature Integration:
 - Add advanced elements like scorekeeping, levels, timers.
 - Use of Lists and Variables:
 - Implement these to enhance gameplay or simulation accuracy.
 - Peer Collaboration:
 - Share techniques and assist classmates.
- Assessment:
 - Complexity and functionality of added features.
 - Collaboration and willingness to help others.

Lesson 12: Testing and Debugging

- **Duration**: 60 minutes
- Activities:
 - Playtesting:
 - Test the project thoroughly for bugs and usability issues.
 - Feedback Collection:
 - Receive input from peers on improvements.
 - Iterative Refinement:
 - Make necessary adjustments based on feedback.
- Assessment:
 - Responsiveness to feedback.
 - Quality of the final, polished project.

Week 4: Finalizing and Presenting Projects

Lesson 13: Preparing Presentations

- **Duration**: 60 minutes
- Activities:
 - Presentation Skills:
 - Discuss effective communication and demonstration techniques.
 - Visual Aids:
 - Create slides or posters to accompany the project showcase.
 - Rehearsal:
 - Practice presenting to small groups.
- Assessment:
 - Preparedness for presentation.
 - Quality of visual aids.

Lesson 14: Project Presentations

- **Duration**: 60 minutes
- Activities:

- Showcase Event:
 - Present projects to the class, teachers, or invited guests.
- **Q&A Session**:
 - Answer questions about the project and coding process.
- Assessment:
 - Clarity and confidence in presentation.
 - Depth of understanding demonstrated in responses.

Lesson 15: Reflection and Self-Assessment

- **Duration**: 60 minutes
- Activities:
 - Written Reflection:
 - Students write about their learning experience, challenges, and achievements.
 - **Peer Review**:
 - Provide constructive feedback to classmates.
- Assessment:
 - Insightfulness of reflections.
 - Thoughtfulness in peer reviews.

Lesson 16: Extension Activities (Optional)

- **Duration**: 60 minutes
- Activities:
 - Exploring Extensions:
 - Introduce additional Scratch extensions (e.g., text-to-speech, video sensing).
 - Creative Experimentation:
 - Encourage students to incorporate these into their projects or new mini-projects.
- Assessment:
 - Exploration and integration of new features.
 - Continued enthusiasm for learning.

Ongoing Assessments Throughout Unit

- Coding Journals: Regular entries documenting ideas, code snippets, and challenges.
- **Participation**: Active engagement in coding sessions and discussions.
- Quizzes: Periodic assessments on advanced coding concepts.

Standards Alignment

- CSTA K-12 Computer Science Standards:
 - **2-AP-13**: Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
 - 2-AP-17: Systematically test and refine programs using a range of test cases.
- ISTE Standards for Students:

• **1.5 Computational Thinker**: Students develop strategies for understanding and solving problems.

Unit 2: Environmental Engineering Projects

Duration: 4 Weeks

Unit Objectives

- Understand environmental challenges and the role of engineering in solving them.
- Apply the engineering design process to address real-world environmental issues.
- Develop research, collaboration, and presentation skills.
- Foster environmental stewardship and sustainability awareness.
- Enhance critical thinking and creativity.

Week 5: Introduction to Environmental Engineering

Lesson 1: What Is Environmental Engineering?

- **Duration**: 60 minutes
- Activities:
 - Interactive Presentation:
 - Discuss the role of environmental engineers.
 - Explore current environmental issues (pollution, climate change).
 - Class Discussion:
 - Brainstorm ways engineering can address these issues.
- Assessment:
 - Participation in discussions.
 - Completion of a KWL chart.

Lesson 2: The Engineering Design Process

- **Duration**: 60 minutes
- Activities:
 - Introduction:
 - Review the steps: Ask, Imagine, Plan, Create, Test, Improve.
 - Case Studies:
 - Examine successful environmental engineering projects.
 - Group Activity:
 - Apply the design process to a simple problem.
- Assessment:
 - Understanding of each step.

• Engagement in group activity.

Week 6: Project Planning and Research

Lesson 3: Identifying Environmental Problems

- **Duration**: 60 minutes
- Activities:
 - Research Assignment:
 - In groups, select an environmental issue to address (e.g., waste management, water conservation).
 - **Problem Definition**:
 - Clearly define the problem and its impacts.
- Assessment:
 - Clarity in problem statements.
 - Depth of research.

Lesson 4: Brainstorming Solutions

- **Duration**: 60 minutes
- Activities:
 - Idea Generation:
 - Use brainstorming techniques to come up with possible solutions.
 - Feasibility Analysis:
 - Evaluate ideas based on criteria such as cost, effectiveness, and sustainability.
- Assessment:
 - Variety and originality of ideas.
 - Critical evaluation skills.

Lesson 5: Planning the Project

- **Duration**: 60 minutes
- Activities:
 - Detailed Planning:
 - Develop a plan including materials, methods, and timelines.
 - Design Sketches:
 - Create diagrams or prototypes of the proposed solution.
- Assessment:
 - Completeness and practicality of the plan.
 - Quality of design sketches.

Lesson 6: Research on Materials and Methods

- **Duration**: 60 minutes
- Activities:

- Materials Selection:
 - Research eco-friendly and sustainable materials.
- Methodology Development:
 - Outline procedures for creating and testing the solution.
- Assessment:
 - Justification for material choices.
 - Logical and safe methods.

Week 7: Building and Testing Prototypes

Lesson 7: Constructing Prototypes

- **Duration**: Multiple sessions totaling 180 minutes
- Activities:
 - Hands-On Building:
 - Begin constructing the prototype according to the plan.
 - **Team Collaboration**:
 - Assign roles and responsibilities within the group.
- Assessment:
 - Progress in construction.
 - Effective teamwork and communication.

Lesson 8: Testing and Data Collection

- **Duration**: 60 minutes
- Activities:
 - **Experimentation**:
 - Test the prototype under controlled conditions.
 - Data Recording:
 - Collect quantitative and qualitative data on performance.
- Assessment:
 - Accuracy and thoroughness in data collection.
 - Adherence to testing procedures.

Lesson 9: Analyzing Results and Iterating

- **Duration**: 60 minutes
- Activities:
 - Data Analysis:
 - Interpret the results and identify areas for improvement.
 - Iteration:
 - Modify the prototype based on findings and retest if time allows.
- Assessment:
 - Ability to draw conclusions from data.
 - Willingness to refine and improve the design.

Week 8: Finalizing Projects and Presentations

Lesson 10: Preparing Presentations

- **Duration**: 60 minutes
- Activities:
 - **Presentation Development**:
 - Create slides, posters, or reports summarizing the project.
 - **Practice Runs**:
 - Rehearse presentations with peers and receive feedback.
- Assessment:
 - Quality and clarity of presentation materials.
 - Responsiveness to feedback.

Lesson 11: Project Showcase

- **Duration**: 60 minutes
- Activities:
 - Formal Presentations:
 - Present projects to the class, other students, or community members.
 - **Demonstrations**:
 - Showcase prototypes and explain how they work.
- Assessment:
 - Effectiveness of communication.
 - Demonstrated understanding of the project.

Lesson 12: Reflection and Environmental Stewardship

- **Duration**: 60 minutes
- Activities:
 - Group Reflection:
 - Discuss what was learned and the impact of their solutions.
 - Action Plans:
 - Develop personal or class commitments to environmental stewardship.
- Assessment:
 - Depth of reflection.
 - Practicality of action plans.

Ongoing Assessments Throughout Unit

- Project Journals: Documenting research, designs, and reflections.
- Participation: Active engagement in group work and discussions.
- **Observation**: Teacher observations of collaboration and problem-solving skills.

Standards Alignment

- NGSS MS-ETS1-1: Define the criteria and constraints of a design problem.
- NGSS MS-ETS1-2: Evaluate competing design solutions.
- NGSS MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing human impact.
- CCSS.ELA-LITERACY.SL.6.4: Present claims and findings in a focused manner.

Unit 3: Introductory Algebra and Geometry

Duration: 4 Weeks

Unit Objectives

- Understand and apply concepts of variables and algebraic expressions.
- Solve one-variable equations and inequalities.
- Explore geometric shapes, properties, and theorems.
- Develop reasoning and problem-solving skills.
- Connect mathematical concepts to real-world applications.

Week 9: Foundations of Algebra

Lesson 1: Understanding Variables and Expressions

- **Duration**: 60 minutes
- Activities:
 - Interactive Lecture:
 - Introduce variables as symbols representing numbers.
 - Explain algebraic expressions.
 - Practice Problems:
 - Write expressions from word phrases and vice versa.
- Assessment:
 - Accuracy in translating phrases to expressions.
 - Participation in class examples.

Lesson 2: Simplifying Algebraic Expressions

- **Duration**: 60 minutes
- Activities:
 - Teaching Concepts:
 - Discuss combining like terms and the distributive property.
 - **Guided Practice**:
 - Simplify given expressions step by step.
- Assessment:

0

- Correct simplification of expressions.
- Understanding of properties used.

Lesson 3: Solving One-Step Equations

- **Duration**: 60 minutes
- Activities:
 - **Explanation**:
 - Introduce inverse operations to isolate the variable.
 - Hands-On Activity:
 - Use balance scales to represent equations physically.
 - Independent Practice:
 - Solve equations involving addition, subtraction, multiplication, and division.
- Assessment:
 - Accuracy in solving equations.
 - Ability to check solutions.

Lesson 4: Solving Two-Step Equations

- **Duration**: 60 minutes
- Activities:
 - Concept Building:
 - Extend to two-step equations involving multiple operations.
 - Problem-Solving:
 - Work through examples with increasing complexity.
- Assessment:
 - Correct solutions.
 - Logical progression in solving steps.

Week 10: Exploring Inequalities and Functions

Lesson 5: Understanding Inequalities

- **Duration**: 60 minutes
- Activities:
 - Introduction:
 - Define inequalities and their symbols.
 - Graphing on Number Lines:
 - Represent solutions visually.
 - **Practice**:
 - Solve simple inequalities and graph solutions.
- Assessment:
 - Proper graphing of inequalities.
 - Correct interpretation of inequality statements.

Lesson 6: Solving Inequalities

- **Duration**: 60 minutes
- Activities:
 - Instruction:
 - Solve one-step and two-step inequalities.
 - Application Problems:
 - Use inequalities in real-world contexts.
- Assessment:
 - Accuracy in solutions.
 - Ability to apply concepts to practical situations.

Lesson 7: Introduction to Functions

- **Duration**: 60 minutes
- Activities:
 - Concept Explanation:
 - Define functions as relationships between inputs and outputs.
 - Function Tables:
 - Complete tables based on given rules.
 - **Graphing Functions**:
 - Plot points on coordinate planes.
- Assessment:
 - Correct completion of function tables.
 - Accurate graphing of functions.

Lesson 8: Patterns and Sequences

- **Duration**: 60 minutes
- Activities:
 - **Exploration**:
 - Identify arithmetic sequences and patterns.
 - **Rule Formulation**:
 - Derive formulas for nth terms.
- Assessment:
 - Identification of patterns.
 - Ability to express rules algebraically.

Week 11: Geometry Concepts

Lesson 9: Basic Geometric Figures

- **Duration**: 60 minutes
- Activities:
 - **Review**:

- Discuss points, lines, planes, angles, and their relationships.
- Measurement:
 - Use protractors and rulers to measure angles and lengths.
- Assessment:
 - Correct use of measurement tools.
 - Understanding of geometric terms.

Lesson 10: Properties of Triangles and Quadrilaterals

- **Duration**: 60 minutes
- Activities:
 - Classification:
 - Identify types of triangles (by sides and angles) and quadrilaterals.
 - **Properties Exploration**:
 - Examine angle sums and side relationships.
- Assessment:
 - Accurate classification.
 - Application of properties to solve problems.

Lesson 11: Circles and Their Parts

- **Duration**: 60 minutes
- Activities:
 - Concept Introduction:
 - Define radius, diameter, circumference, and area.
 - Calculations:
 - Use formulas to find circumference and area.
- Assessment:
 - Correct use of formulas.
 - Precision in calculations.

Lesson 12: Coordinate Geometry

- **Duration**: 60 minutes
- Activities:
 - **Plotting Points**:
 - Practice placing points on the coordinate plane.
 - Distance and Midpoint:
 - Introduce formulas and solve problems.
- Assessment:
 - Accurate plotting.
 - Correct application of formulas.

Week 12: Applying Algebra and Geometry

Lesson 13: Solving Real-World Problems

- **Duration**: 60 minutes
- Activities:
 - Word Problems:
 - Apply algebraic and geometric concepts to practical scenarios.
 - Group Work:
 - Collaborate to solve complex problems.
- Assessment:
 - Logical reasoning.
 - Ability to explain solutions.

Lesson 14: Review and Practice

- **Duration**: 60 minutes
- Activities:
 - Comprehensive Review:
 - Revisit key concepts with practice exercises.
 - Question and Answer Session:
 - Address any lingering uncertainties.
- Assessment:
 - Completion of review exercises.
 - Engagement in clarifying doubts.

Lesson 15: Unit Assessment

- **Duration**: 60 minutes
- Activities:
 - Written Test:
 - Evaluate understanding through a combination of multiple-choice, short-answer, and problem-solving questions.
- Assessment:
 - Performance on the test.
 - Demonstrated mastery of unit objectives.

Lesson 16: Reflection and Goal Setting

- **Duration**: 60 minutes
- Activities:
 - Self-Assessment:
 - Reflect on learning progress and areas for improvement.
 - Future Planning:
 - Set academic goals for continued growth in mathematics.
- Assessment:
 - Honesty and insightfulness in reflections.

• Specificity of goals.

Ongoing Assessments Throughout Unit

- Homework Assignments: Regular practice to reinforce concepts.
- Quizzes: Short assessments after key topics.
- Class Participation: Engagement in lessons and willingness to contribute.

Standards Alignment

- Common Core State Standards for Mathematics:
 - **6.EE.A.1–4**: Expressions and Equations.
 - **6.G.A.1–4**: Geometry.
 - **6.NS.C.8**: Solve real-world problems by graphing points.

Additional Notes for Educators

- Differentiation:
 - Provide additional support or enrichment activities as needed.
 - Use varied instructional methods to cater to different learning styles.
- Integration Opportunities:
 - Incorporate technology by using graphing calculators or geometry software.
 - Connect mathematical concepts to science and engineering units.
- Assessment Strategies:
 - Use formative assessments to guide instruction.
 - Offer feedback that promotes growth mindset and resilience.
- Parental Involvement:
 - Encourage parents to support learning at home with resources and discussions.